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Critical Point Approximation Through 
Exact Regularization 

By Enrique Fernandez-Cara and Carlos Moreno 

Abstract. We present several iterative methods for finding the critical points and/or the 
minima of a functional which is essentially the difference between two convex functions. The 
underlying idea relies upon partial and exact regularization of the functional, which allows us 
to preserve the local feature in a large number of applications, as well as to obtain some 
convergence results. These methods are further applied to some differential problems of the 
semilinear elliptic type arising in plasma physics and fluid mechanics. 

1. Introduction. The main objective in this paper is to construct iterative algo- 
rithms for solving nondifferentiable extremal problems. From a theoretical point of 
view it is always possible to reformulate any such problem as an equivalent 
differentiable convex problem by means of the use of infimal convolution. 

More precisely, with H being a real Hilbert space and J: H - (-oo, oX] a proper 
lower semicontinuous (lsc) convex function, one has 

inf J(v) = inf J(V) + 2A - wI1} inf JA(w) 
I, E=- II.) W E=H Xw E=- I 

for all X > 0. It is well known that Jx is F-differentiable and convex and J;A is 
Lipschitz-continuous with constant 1/X. Furthermore, if J is bounded from below, 
then 

Arg min JA(w) = Arg min J(v). 
Ul e II t, H 

This argument allows us to use the (classical) methods in differentiable optimiza- 
tion to minimize J over H. Thus, for the steepest descent algorithm, one is led to the 
following scheme: 

(1.1) UA+1 = Uk - PkJA(UA), 

(1.2) P-k = Arg min J(A( - PJA(U)). 
pao 

The fact that J' is (1/X)-Lipschitz-continuous has an important consequence on 
the size of PA. Indeed, one must have Pk > X. Therefore, it is reasonable to take 

PA = X for all k, which leads to the proximal point algorithm: 

(1.3) UA?1 = RA((U) UA - XJ(A( ). 
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The operator R( is the proximal mapping or resolvent associated with the 
subdifferential of J, i.e., with the set 

aJ(v) = {q E H; J(w)-J(v) > (q,w-v) ,Vw E H}. 

This algorithm has first been used by B. Martinet (see [26]; see also [31], [32]). 
Although it is not obvious that (1.3) provides a useful method for minimizing an 
arbitrary convex function, this scheme has an important particularization: the 
multipliers method of Hestenes and Powell (see [32]). Applications of (1.3) and some 
of its variants to the solution of elliptic variational inequalities can be found in [91, 
[13], [14], [18], [19], [21], [22], [25] among others. 

Our goal in this paper is to show that these techniques can be carried over to some 
nonconvex problems. First we recall some fundamental facts about the convex case. 
In general, for a function 4: H -* (-oo, xe], 0*(q) = SUPv E H{(q, V)H -(v)} is the 
convex conjugate of 4. 

Let f and g be two proper lsc convex functions on H. We consider the (primal) 
problem 

(1 .4) Minimize J(v) =f (v) + g(v) 

subject to v E H. 

Following Fenchel and Rockafellar (see [11], [33], [34]), one can associate with 
(1.4) the dual problem 

(1.5) Minimize J*(q) = g*(q) + f *(-q) 

subject to q E H. 

One knows that (under certain reasonable conditions) for a solution u (resp. p) of 
(1.4) (resp. (1.5)) the following extremality condition is satisfied: 

Ue af*(-P), p e ag(u). 

The proximal point algorithm applied to (1.5) yields the Hestenes and Powell 
iteration: 

(1.6) af(uk+) +Pk+l 3 0 

(1.7) Pk+1 g=(uk+l + XPk). 

We note that for quadratic, strongly convex f (also under weaker conditions) one 
obtains convergence results for the following semiexplicit version of (1.6)-(1.7): 

(1.8) f'(Uk+l) +Pk = 0, 

(1.9) Pk?1 = gjX(Uk+l + XPk) 

(see [9]). It can be shown that the sequence J*(Pk) generated by (1.8)-(1.9) is 
monotone decreasing for X large enough. 

We turn now to the nonconvex case. A great number of nondifferentiable 
extremal problems can be formulated as: 

(1 .10) Minimize J(v) =f (v) - g(v) 
subject to v E H, 

where f and g are as above. Again, in this case, a dual problem can be introduced 
(see [41], [42]; see also [4]): 

(1.11) Minimize J*(q) = g*(q) - f *(q) 

subject to q E H, 
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and the extremality relations become 

u e af*(p), p e ag(u). 

In general, it is not easy to apply an implicit scheme for solving (1.10) or (1.11), 
because at each step we would have to solve a nonconvex problem. This difficulty 
disappears for the semiexplicit scheme: 

(1.12) af (Uk+l) 3 Pk, 

(1.13) Pk+1 g= ( ukul + Xpk)- 

Now, the monotonicity of J*( pk) is obtained without additional conditions on X, 
since one has 

(1.14) g*(Pk+l) f(Pk+) + X2IPk - Pk+lH 

2 

g*(Pk) 1 (Pk)- 

The fact that a positive parameter X is used in (1.13) may certainly decrease the 
speed of convergence with respect to a fixed-point scheme. Indeed, there is no reason 
to choose X > 0, except that it is in general necessary to make the definition of g' 
meaningful. However, for some particular cases (see Section 3), this limitation can be 
removed. 

Another class of extremal problems considered in this paper is the following: 

(1.15) Minimize J(v) = f (v) - g(v) 

subject to v e WK. 

Here, K c H is a closed convex set with nonempty interior and aK is its 
boundary. According to J. B. Hiriart-Urruty [231, an optimality condition for any 
solution u of (1.15) is 

(1.16) af(u) -ag(u) + N(K; u) n N(Kc; u) 3 0, 

where 

N(K; u) is the normal cone to K at u, i.e., the subdifferential 
of the indicator functional of K at u (N(K; u) = aIK(u) with 
IK(V) = 0 if v E K, IK(v) = xo otherwise), 
N(KC; u) is the (generalized) normal cone to the closure of 
KC at u, i.e., the generalized gradient (in the sense of F. H. 
Clarke [10]) of the function "distance from KC" at u. 

Under the following regularity assumption on W: 

(1.17) N(K; u) n N(KC; u) is a linear subspace of dimension one, 

relation (1.16) becomes 

(1.18) af(u) - ag(u) + ,Bn(u) 3 0, 

for some real constant ,B and with q(u) being (by definition) a normal vector to aK 
at u. Using (1.18), one can formulate some iterative methods for (1.15) similar to 
(1.12)-(1.13) (for details, see Section 4). 

The remainder of this paper is organized as follows. In Section 2 we present the 
general formulation and the convergence analysis of an algorithm of the kind 
(1.12)-(1.13). Next (see Section 3), we apply these results to the solution of some 
elliptic problems with discontinuous nonlinearities. In Section 4 we consider some 
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constrained problems for which we again derive a "smoothing" iterative procedure. 
Finally, Sections 5 and 6 deal with the applications of these techniques to the 
numerical solution of two free boundary problems, originating respectively in 
plasma physics and fluid mechanics. 

2. The Unconstrained Problem. Throughout the sequel, V is a real reflexive 
Banach space, V' is its dual space and B is a bounded linear operator from V into 
H, a Hilbert space. The functions f: V -* (-x, cx] and g: H -* (-x, cx] will be 
assumed to be convex, proper and lsc, and we identify H with its dual space. We set 

(2.1) J(v) = f(v)-g(Bv) v vE V. 

Whether or not the algorithms described in Section 1 are computationally feasible 
depends upon the availability of an efficient procedure for evaluating g'. This 
motivates the presence of B in (2.1). 

Our purpose is to find u E V satisfying 

(2.2) af(u) - a(go B)(u) 3 0 

(this is an inclusion in V'). In particular, every point at which J reaches its 
minimum (if it exists) satisfies (2.2). In accordance with the rules of the subdifferen- 
tial calculus, one has 

a(goB)(v) DB*ag(Bv) v vE V, 

where B * is the adjoint of B. Thus, it suffices to solve 

(2.3) af(u) - B*ag(BU) 3 0, u E V. 

We consider the following algorithm: 

ALGORITHM 1 (X is a fixed positive parameter). 
(a) Choose p(o E H. 
(b) For given k > 0 and Pk E H, compute U+1 and Pk?1 by 

(2.4) af(Uk?+l) 3 B *P,, Pk+1 = g'(Buk+l + XPk). 

As in Section 1, g' in (2.4) is the Yosida approximation of the maximal monotone 
operator ag, i.e., 

(2.5) gx = -(Id - R), Rg = (Id + Xg)1. 

Actually, to make (2.4) meaningful, an assumption is necessary asserting that 

af *( B *pA) / 0. So, the following condition on f and B will be imposed: 

(2.6) Domaf * D R(B*). 

THEOREM 2.7. Assume that, together with (2.6), one has 

(2.8) inf J(v) > -C > -oo, 
,, V 

(2.9) J is coercive, i.e., J(v) vx as v E V, IvIv - , 

(2.10) B (= Y( V; H) is compact. 

Then every sequence { Uk ) generated by Algorithm I possesses subsequences weakly 
convergent in V whose limit points are critical in the sense of (2.3). 
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Proof. Clearly, (2.4) is equivalent to 

(2.11) f(Uk+l) +f *(B*Pk) = (Pk,BUk+?)H, 

(2.12) Pk+1 C ag(Buk+l + X(Pk Pk+l)) 

The last formula can also be written as 

(2.13) Pk+1=Argmin g*(q) + Iq 1P2- (q,BUk?l)H} 

Then, for J * = g* - f * o B*, one obtains the following chain of inequalities: 

J*( Pk+ 1) -< t(Uk+l) + 9* (Pk+l1) -(Pk+ 1aBuk+l)H 

(2.14a) =*(Pk+1) *(B*Pk) +(Pk-Pk+,,BUk+JH 

X 2 * 
J*( Pk) -2 1jPk Pk+1IHI 

On the other hand, 

(2.14b) f(uk) + g*(Pk) -(pk,Buk) > f(Uk) - g(BUk) = J(Uk). 

Hence, { J *( P,)) is decreasing and, by (2.8), bounded from below: 

(2.15) J* (Pk) > J(Uk+l) > -C. 

Consequently, J*(Pk) converges monotonically to a real number go as k x. 
Using (2.14a), one also has 

(2.16) 2 E lPk Pk+11H J (PO) 0 
k>_O 

whence 

(2.17) lim Pk Pk+?1I= 0 
k- &o 

(obviously, it may be assumed that po E Domg*). Since J(u,) is also uniformly 
bounded, (2.9) yields 
(2.18) U, is uniformly bounded in V. 

This proves that { ti,k) possesses weak adherent points in V. 
Suppose now that u is the weak limit of a subsequence { u,j. We know that 

(2.19) Pt, C= a g ( But + X( pt,-I - pj) for all [t. 
But Bu + X( Pg- - p,) converges strongly in H towards Bu. Hence, { p) } is 
bounded and it can be assumed that it converges weakly in H to p. To conclude, it 
will be sufficient to prove that 

B*p E af(u) n B*ag(Bu). 
Now, from (2.17) one sees that p is also the weak limit of Pg-I as pi cx. 

Therefore, the lower semicontinuity of f and g gives 

f(u) + f *(B*p) < lim { f(u) + f *(B*p,-)} 
tL 

-- 00 

= lim 
(PA - 1 Bu, ) = p, Bu) 

tL 
-- 00 

g(Bu) + g*(p) < lim { g( Bu, + X(p P- p) + g*(Pj} 
tL 

-- 00 

= (p,Bu),, 
and the proof is completed. El 
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The function J *, given by 

(2.20) J*(q) = g*(q)-f*(B*q) Vq E H, 

is the dual (or polar) functional associated with J (cf. [41], [42]). 
Next, we make some remarks regarding Algorithm 1. Hypotheses (2.8) and/or 

(2.9) can be replaced, respectively, by 

(2.8*) inf J*(q) > -C > -x, 
qEH 

(2.9*) J * is coercive. 

We also note that 

(2.21) p E ag(Bu), B*p E af (u) a u af *(B*p), Bu E ag*(p). 

In other words, finding critical points for J and J* are, in some sense, equivalent 
problems. It is thus reasonable to formulate iterative schemes of the kind (2.4) for 
the dual problem 

(2.2*) ag*(p) - Baf*(B*p) 3 0, p E H. 

The previous algorithm is related to Algorithm 2 in [17]. There, uk+l and Pkll 
are defined recursively, using a semi-implicit gradient formula for the (totally) 
regularized problem 

Minimize fX(v) - gx(v) 
subject to v E V. 

Other than that, we have adopted a different point of view, carrying out a partial, or 
at least independent, exact regularization procedure for the function J. Some 
advantages of this are that similar arguments hold for certain constrained problems 
(cf. Section 4) and that local features, typical of certain operators arising in 
differential problems, are, in this way, preserved. 

3. Applications (I): Some Elliptic Problems with Discontinuous Nonlinearities. As a 
first application, consider the following problem: 

(3.1) Find u E H2(02) such that -Au(x) E aG(x, u(x)) a.e. in S2, 

Here, Q c RN is a bounded open set whose boundary a Q is sufficiently smooth and 
G: x R -- R is continuous, convex and subquadratic with respect to its second 
variable, i.e., 

(3.2) G(x,s) < a|sl2 + b V(x,s) Ec xR, a < X1. 

A1 is the first eigenvalue of the homogeneous Dirichlet problem for the operator -A; 
in the sequel, aG(x, s') stands for the subdifferential of the function s -- G(x, s) at 
S. 
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It is not difficult to see that (3.1) can be rewritten in the form (2.3) with 

V = Ho'(Q), H = L2(Q), B: the compact embedding Ho L2, 

f(v)-|fVvl2 dx and g(q)f G(x,q)dx. 

In this case, Algorithm 1 leads to the following iteration: 

-Auk+l =Pk in Q, uk+l = on aQ, 

Pk+l(X) = (aG)x(x, Uk+l(X) +Pk(X)) a.e. in Q. 

Since G is subquadratic in s, assumptions (2.8) and (2.9) are satisfied. Hence, 
from the convergence result in Section 2 and standard elliptic regularity one easily 
deduces the strong convergence in Ho(Q) of a subsequence { Uk } towards a solution 
of (3.1). 

From a computational point of view, the preceding method is not expensive; at 
each step, it only requires the solution of a linear problem and the computation of 

Pk+1l This can be easily achieved if we perform previously a tabulation of the 
function (aG ) A and approximate to Pk + 1(x) using an interpolation method. 

Roughly speaking, (3.3) plays the role of the monotone scheme of H. Amann [1], 
[2] and D. Sattinger [35] in the case in which G(x, ) is not differentiable. Let us 
point out that the sequence { Uk } is monotonic if one chooses po appropriately (for a 
precise result, see [12]). A negative aspect of (3.3) is, however, that the positiveness of 
X may decrease the speed of convergence. Indeed, it is straightforward to verify that, 
when { Uk } is monotonic, the larger X is, the more slowly Uk converges. It is thus 
quite tempting to conclude that a more appropriate algorithm would be obtained if 
X were replaced by -X in (3.3), i.e., by setting 

(3.4) Pk?l E -!(Id -(Id - XaG(x, *))1)(uk?1 - XPk) ae 

In fact, using (3.2), it can be proved that, for small A > 0, the operator 

(3.5) -'(Id - (Id - XaG(x, )) ): -* R 

is single-valued for x a.e. in U. 
More generally, with the setting of Section 2, one has the following result, which 

can be demonstrated similarly to Theorem 2.7. 

THEOREM 3.6. Assume that, together with (2.6), (2.8)-(2.10), one has 

(3.7) 3a,b > 0suchthatg(q) < 2Iq12 + b Vq E H. 

Then there exists X > 0, only depending on a, f and IBL(v; VII, such that: 
(i) For any ) E (0, X), the operator (ag)-x = -(Id - (Id - Xag) -)/X is single- 

valued, with domain H; 
(ii) For any po E H and any X E (0, X), the iterates in 

(3.8) af(Uk+L) E BpA, Pk+1 = (ag)j(BUk+l - Xp) 

are well defined. The conclusion of Theorem 2.7 holds for the sequence { u }. 

4. Some Problems with Constraints on the Boundary of a Convex Set. With the 
general setting of Section 2, let K be a closed convex subset of H whose boundary 
aK is nonempty. We wish to solve the following extremal problem, formulated in 
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terms of the (originally) dual functional: 

(4.1) Minimize g*(q)-f *(B*q) 
subject to q E aK. 

As mentioned above (see Section 1), the following optimality condition must hold at 
a solution p E aK: 

(4.2) ag*(p)-a(f*oB*)(p) +N(K; p) n N(Kc; p) o O. 

Set NaK(p) = N(K; p)N(KC; p); NaK(p) is the normal subcone to aK at p. In 
order to find a solution to (4.2), we propose the following "formal" scheme, which in 
spirit agrees with that of Algorithm 1. 

ALGORITHM 2 (X is a fixed positive parameter). 
(a) Choose po E H. 
(b) For given k > 0 and Pk E H, compute Vk+l and Pk+, by 

(43) vk)+1 E? af *(B*Pk) + B1NaK(Pk), 

Pk+1 = gA(BVk+l + XPk) Pk+1 E aK. 

These iterates must be interpreted as follows: The choice of the component of 
Vk+1 in B-'NaK(Pk) has to be such that, for Pk+, as in (4.3), one has Pk+, E 3K. 

In order to make (4.3) meaningful, it will be assumed that (2.6) still holds and that 

(4.4) R(B) nNaK (q) * 0 Vq E aK. 

The regularity property (1.17) is satisfied by a large number of constraint sets. 
When it holds, NaK(q) is a straight line for every q E 3K, spanned by the (normal) 
vector -q(q) = 0. It is obvious that, in this case, (4.3) can be restated as: 

(4.5) Find wk+l E af*(B*pk) and 
/3k+1 

E R such that 

gA(BWk+l + 3k+?1 * (Pk) + XPk) E 3K. 

In other words, under assumptions (1.17) and (4.4), (4.3) differs from (2.4) exclu- 
sively in the solution of a nonlinear scalar problem in the real variable /k?l- In the 
remaining parts of this paper, we illustrate the behavior of Algorithm 2 with two 
applications. 

5. Applications (II): A Free Boundary Problem in Plasma Physics. Let Q be a 
bounded open set in R2 with smooth boundary aQ. We consider the following 
semilinear elliptic problem, which models the equilibrium of a plasma confined in a 
cylindrical cavity: 

Find u E H2(Q) and /3 Ee R such that --Au(x) E aG(x, u(x)) 

(5.1) a.e. in Q =,u on4, -t au dr =I. 
3 n 
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Here, I is a positive constant (the total longitudinal current interior to the 
plasma), u = u(x1, x2) is the flux function for the magnetic field and G: Q x R -* R 
is required to satisfy: 

(G.1) G is continuous, s -* G(x,s) isconvex Vx E Q, 

(G.2) G(x,s) = 0 fors < 0, 

(G.3) 3c1, c2 e RsuchthatG(x,s) 9 cIs2/2 +c2, 

(G.4) lim G(x,s - O)dx > I. 
s -- cc s 

In view of (G.1)-(G.2), aG is nondecreasing in s, and one can write 

aG(x,s) = [aG(x,s - 0), aG(x,s + 0)] V(x,s) E Q xR. 

If (u, /3) is a solution of (5.1) and /3 < 0, a free boundary is implicitly given by (5.1): 
the boundary of the open set 

Q,= x E Q; u(x) > O}, 

i.e., the cross section of the cylindrical region occupied by the plasma. For a 
complete derivation of the equations which lead to (5.1) see [27], [39]. Problem (5.1) 
and/or some of its variants have been studied by several authors (see, e.g., [7], [24], 
[30], [36], [39], [40]). From a numerical point of view, an iterative procedure has been 
analyzed by H. Berestycki and H. Brezis in [7] (see also [37]). 

In the context of Section 4, (5.1) possesses a weak formulation with 

V= Hod(S;) E R, H = L2(Q), K= {qEH: I qdx I, 

B: the compact embedding Ho ED R eL2 

f(v) f v| dx and g(q) f G(x,q)dx. 

In this case, the set K is a closed semispace of L2(Qi) and 

(5.2) aK= {qEL2(Q); I qdx = I; 

consequently, NaK(q) R for every q E K and assumptions (1.17) and (4.4) are 
satisfied. Also, it is not difficult to prove that (2.6) holds. 

Assuming that Algorithm 2 is well defined, i.e., (4.3) possesses a solution for each 
k > 0, it will lead to the following iteration: 

-AWk?l = Pk in Q, Wk+I =O on 4Q, 

(5.3) Pk+I =g (BWk+l + k+I + XPk), fpk+ldx =1, 3k+I E R. 

Thus, we have to prove that, for a given Pk E aK satisfying Pk > 0 a.e., there exists 
a solution 18k+? to (5.3). We begin by stating the following lemma, whose proof is 
given below. 
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LEMMA 5.4. Under assumptions (G.1)-(G.4) one has 

lim f g'(/) dx > I. 

For any,8/ E R, set 

(5.5) Tk(/8)=/3- mea5(0) {f g'(Bwk+l + / + XPk) dx - I} 

Evidently, /3 is a solution of (5.3) if and only if it is a fixed point of Tk. The function 
/ --* Tk( /3) is nondecreasing; thus, if we choose /o,k arbitrarily in R and set 

(5.6) 18+31,k = Tk(/l3k) vl > 0, 

the sequence { tl, }l is bounded independently of k and /o3k. Indeed, let us first 
assume that it is nondecreasing and let P.R be such that 

(5.7) f g'(/3*) dx > I. 

Then /81k < 13* for all 1 > 0; otherwise if /1,k > /* for a certain 1, one would have 

P1,k - 1+,k = meas() {LQ g'(l,k) dx I} 

>1 IeS )(l g (#/*) dx- I) 

and h,,.A > /18 + 1 k' which contradicts the fact that { 1, }kis nondecreasing. 
On the other hand, if { /3/k },is nonincreasing, it must be bounded from below by 

a constant /3** independent of k and /0,k. Indeed, from elliptic regularity (see, e.g., 
[20]), one knows that a positive constant 8 exists (only depending on I and Q) such 
that 

IWk+1 IL Wk+1dX > 8. 

Clearly, lim 04 fI gA(P3) dx = 0. Let * be such that 

(5.8) f g'(/3*) dx < 8/2. 

Then fl,k > /3** for all I >? 0, for, if 1,3k 1< f** for a certain 1, one would have 

)0/+ 1,k -,k = 
d )1 f8 I fa(Dx k) dx 

8 
> 2 meas(Q)' 

whence /18 + 1, k > AI, k which is absurd. 
Therefore, the sequence { ,B,k )}/ converges, and its limit 3*k is a solution of (5.3). 

Since the bounds /B* and ,B** only depend on X, g, I and Q, we conclude that (5.3) 
can be solved for each k with solutions 3k- ?1 = B.k in a bounded interval of R. 
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It remains to prove Lemma 5.4. 
Proof of Lemma 5.4. It will suffice to prove that, for ,B large enough, 

I {t- Rg(#t)) dx-)XI > O. 

By the definition of RK, one must have 

(5.9) /3E- RK(/3) + X [aG(x, RKv(/) - O), aG(x, RKv(/) + O)] a.e., 

whence /3 > RK(/3) + XaG(x, RK(/3) - 0), and it suffices to prove 

(5.10) f aG(x,RK(/3) - 0)dx >I for some/3. 

But this is an almost trivial consequence of (G.4). [ 
Once it has been established that Algorithm 2 is well defined for problem (5.1), a 

convergence result for (5.3) can be derived: 

THEOREM 5.11. Assume that G satisfies (G.1)-(G.4), and let po be a function in aK 

a. e. nonnegative. Then the sequence (Wk, Ik), given by (5.3), possesses subsequences 
which converge strongly in Ho(Q) x R. If (w, /3) is the limit of such a sequence, then 
the pair (w + 13, f) is a solution of (5.1). 

Proof. Using the same argument as in the proof of Theorem 2.7, one obtains 

J *(Pk?l) < (wk?l) + g*(Pk+l) 
- 

fPk+lWk+ldx 

(5.12) X22 
(5.1)< J*(Pk) - 2 | Pk -Pk+1 I dx Vk > 0. 

Furthermore, J * is coercive and bounded from below in 3K. Indeed, for any 
q E K, one has (here c and c are positive constants and S is the inverse of -A with 
homogeneous Dirichlet conditions): 

J*(q) fG*(x,q)dx - 2fSB*q qdx 

12 I 
> 2 Iq 12 - 2jCjqL 2 - C 

As in the proof of Theorem 2.7, one deduces that (Pk, /k) is uniformly bounded 
in L2(Q) x R. So, wk is uniformly bounded in H2(Q) and the existence of 
convergent subsequences is demonstrated. 

Let (w, f) be the strong limit in H'(Q) x R of a subsequence {(wp,f,3)}. We may 
suppose that p-* p weakly in L2(Q), with p E 3K. Also, p,- - -p 0 strongly; 
from relations 

pEag(Bw+/3?L+X(PL-PA-)), w, =SB*p_1, 

it is easily seen that p e ag(Bw + /3) and w = SB*p, i.e., 

(5.13) p(x) E aG(x,w(x)?+,) a.e. in 0, 

-Aw=p inQ,we H(1 (). 

As a consequence, (w + /3, / ) solves (5.1). El 
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As in the case of problem (3.1), one observes that, for X = 0, at least formally, 
(5.3) coincides with the fixed-point method described in [7]. Certain uniqueness 
results may be derived for (5.1) under some additional assumptions on G (cf. [7], 
[40]). Obviously, if the solution of (5.1) is unique, then the whole sequence {(Wk, Ik)} 

converges. 

6. Applications (III): A Free Boundary Problem in Vortex Ring Theory. We finally 
present an application of the previous techniques to another free boundary problem, 
this time originating in fluid mechanics. For a given bounded open set Q c: R2 with 
smooth boundary aQ, we wish to 

Find u E H2(Q) and W > 0 such that -Au(x) e H(u(x) - W'(x)) 

(6.1) a.e. in Q, u = 0 on a2, f Vu|dx = q. 

Here, -q is a prescribed positive constant, 

(6.2) D E C1(U), > 0 inQ2, 

and H is, up to a positive coefficient a, the (maximal monotone) operator associated 
with Heaviside's function, i.e., 

{0 for s < 0, 

(6.3) H(s)= [0,a] fors = 0 (a > 0), 
ta for s > 0. 

Problem (6.1) serves to model the equilibrium of a (plane) vortex pair in an ideal 
fluid with vanishing flux parameter (cf. [29]; for a similar problem corresponding to 
the equilibrium of an axisymmetric vortex ring, see [15]). It is easy to see that (6.1) is 
in fact a free boundary problem, where the unknown subdomain is the so-called 
vorticity core region 

QvU {x E Q; u(x) - Wt(X) > 0}. 

Semilinear elliptic problems of this kind have been studied by many authors (see 
[3], [5], [6], [8], [16], [28]). In (6.1), the original domain (unbounded) has been 
approximated by 2, as in [6], [8]. 

In the sequel, we will assume that the following assumption is satisfied: 
ASSUMPTION (A). Let u E C2(Kj) be the solution of 

-Auu=a inn2, u=0 ona8. 

Then 

L UadX = fIu VUa dx > r. 

It is straightforward to see that (A) is in fact a necessary condition for the 
existence of a solution of (6.1). 

Clearly, (6.1) can be rewritten as a problem of type (4.1). It suffices to set 

V= H1(Q), H= L2(E2), K= {qEH; fSB*q qdx < r1 , 
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with B the compact embedding H1 - L2, S as in Section 5, 

(v {0 if v+ ~=O0, g() ad f(v) = (g otherwise, J= q+dx, q+= max(q,O). 

Then K is a closed convex subset of L2(Q) whose boundary is given by 

(6.4) aK=(q EL2(Q); SB*q- qdx =r7 

It is not hard to check that (1.19) and (4.4) hold, since 

NaK(q)= {KBSB*q; K E R} Vq e aK. 

Also, (2.6) is fulfilled. 
Note that Algorithm 2 leads to the following iteration: 

-Awk+l= Pk inQ, Wk+1 =O on ag, 

(6.5) Pk+l = g(B(Vk+lwk+l - ) + XPJ) I SB*Pk+l pk+ldX =q1 

Vk+1 E R. 

Now, for given q E L2(Q), one has 

0? if q(x) <0, 

q gA(q) q(x) = q(x) if O < q(x) < Xa, 

ta if q(x) > Xa. 

For any v E R, set 

Ek(v) = SB*p vp, dx withp,,=gX'(B(VWk+1-0) +XpPk)- 

Then vk+1 solves (6.5) if and only if it solves the scalar equation 

(6.6) Ek(v) =q- 

Arguing as in Section 5, it can be proved that there exist positive constants X* and 
/3 (only depending on a, q and Q) such that, if 0 < A < X,, (6.6) possesses a 
solution Pk+1 > /. Set 

Dk(v)= V - {Ek(A) X ; meas (0){E()1 

then a rather natural procedure for solving (6.6) is given by 

zk+1 = Dk(vl? 1) 1 0. 

We end this section with a convergence result for (6.5), which can be proved 
similarly to Theorem 5.11. 

THEOREM 6.7. Assume that Assumption (A) is satisfied and take X in (0, X*), 
Po E aK, 0 < po < a a.e. Then the sequence {(Uk, 1/Vk)}, defined by (6.5), possesses 
subsequences which converge strongly in H01(Q) X R+. If (u, W) is the limit of such a 
subsequence, then it is a solution of (6.1). 
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Again, (6.5) is a formal generalization of the fixed-point method used by H. 
Berestycki et al. in [8]. The main advantages of this procedure are that it permits the 
numerical treatment of the discontinuous nonlinearity and also that a convergence 
result has been derived. 
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